Chemotactic signaling in filamentous cells of Escherichia coli.

نویسندگان

  • J E Segall
  • A Ishihara
  • H C Berg
چکیده

Video techniques were used to record chemotactic responses of filamentous cells of Escherichia coli stimulated iontophoretically with aspartate. Long, nonseptate cells were produced from polyhook strains either by introducing a cell division mutation or by growth in the presence of cephalexin. Markers indicating rotation of flagellar motors were attached with anti-hook antibodies. Aspartate was applied by iontophoretic ejection from a micropipette, and the effects on the direction of rotation of the markers were measured. Motors near the pipette responded, whereas those sufficiently far away did not, even when the pipette was near the cell surface. The response of a given motor decreased as the pipette was moved away, but it did so less steeply when the pipette remained near the cell surface than when it was moved out into the external medium. This shows that there is an internal signal, but its range is short, only a few micrometers. These experiments rule out signaling by changes in membrane potential, by simple release or binding of a small molecule, or by diffusion of the receptor-attractant complex. A likely candidate for the signal is a protein or ligand that is activated by the receptor and inactivated as it diffuses through the cytoplasm. The range of the signal was found to be substantially longer in a cheZ mutant, suggesting that the product of the cheZ gene contributes to this inactivation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Anti-cancer properties of Escherichia coli Nissle 1917 against HT-29 colon cancer cells through regulation of Bax/Bcl-xL and AKT/PTEN signaling pathways

Objective(s): Chemotherapies used to treat colon cancer might often fail due to the emergence of chemoresistance and side effects. Escherichia coli Nissle 1917 (EcN) is a beneficial probiotic, whose molecular mechanisms in the prevention of colon cancer are yet to be fully understood. The present study assessed the anti-cancer effects of EcN treatments in human colorec...

متن کامل

Motility and chemotaxis of filamentous cells of Escherichia coli.

Filamentous cells of Escherichia coli can be produced by treatment with the antibiotic cephalexin, which blocks cell division but allows cell growth. To explore the effect of cell size on chemotactic activity, we studied the motility and chemotaxis of filamentous cells. The filaments, up to 50 times the length of normal E. coli organisms, were motile and had flagella along their entire lengths....

متن کامل

When Escherichia coli doesn't fit the mold: A pertussis-like toxin with altered specificity.

Bacterial toxins introduce protein modifications such as ADP-ribosylation to manipulate host cell signaling and physiology. Several general mechanisms for toxin function have been established, but the extent to which previously uncharacterized toxins utilize these mechanisms is unknown. A study of an Escherichia coli pertussis-like toxin demonstrates that this protein acts on a known toxin subs...

متن کامل

Motility of Escherichia coli cells in clusters formed by chemotactic aggregation.

Cells of Escherichia coli under conditions of certain cellular stresses excrete attractants. Cells of chemotactic strains respond to these excreted signaling molecules by moving up their local concentration gradients and forming different types of stable multicellular structures. Multicellular clusters are the simplest among these structures. Fluorescence microscopy was used to characterize the...

متن کامل

Responses of Escherichia coli bacteria to two opposing chemoattractant gradients depend on the chemoreceptor ratio.

Escherichia coli chemotaxis has long served as a simple model of environmental signal processing, and bacterial responses to single chemical gradients are relatively well understood. Less is known about the chemotactic behavior of E. coli in multiple chemical gradients. In their native environment, cells are often exposed to multiple chemical stimuli. Using a recently developed microfluidic che...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of bacteriology

دوره 161 1  شماره 

صفحات  -

تاریخ انتشار 1985